
Overshooting and undershooting subordination scenario for fractional
two-power-law relaxation responses

Karina Weron,1 Agnieszka Jurlewicz,2 Marcin Magdziarz,2,* Aleksander Weron,2 and Justyna Trzmiel1
1Institute of Physics, Wrocław University of Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland

2Hugo Steinhaus Center, Institute of Mathematics and Computer Science, Wrocław University of Technology,
Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland

�Received 28 October 2009; revised manuscript received 5 March 2010; published 20 April 2010�

In this paper, we propose a transparent subordination approach to anomalous diffusion processes underlying
the nonexponential relaxation. We investigate properties of a coupled continuous-time random walk that
follows from modeling the occurrence of jumps with compound counting processes. As a result, two different
diffusion processes corresponding to over- and undershooting operational times, respectively, have been found.
We show that within the proposed framework, all empirical two-power-law relaxation patterns may be derived.
This work is motivated by the so-called “less typical” relaxation behavior observed, e.g., for gallium-doped
Cd0.99Mn0.01Te mixed crystals.
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I. INTRODUCTION

Wide-ranging experimental information, collected in both
time and frequency domains, has led to the conclusion that
the classical phenomenology of relaxation breaks down in
complex materials such as supercooled liquids, amorphous
semiconductors and insulators, polymers, disordered crys-
tals, molecular solid solutions, glasses, etc. It has been found
�1� that the relaxation behavior of such materials deviates
considerably from the classical Debye pattern and is repre-
sented by low- and high-frequency fractional power-law de-
pendences of the dielectric susceptibility ����=�����
− i����� on frequency

���� � �i�/�p�n−1, � � �p,

����� � �i�/�p�m, � � �p, �1�

where �����=��0�−����, the exponents n and m fall in the
range �0,1�, and �p denotes the loss peak frequency.

A majority of the dielectric spectroscopy data can be char-
acterized well enough by the empirical Havriliak-Negami
�HN� function �2,3�

�HN��� �
1

�1 + �i�/�p���� , 0 	 �,� 
 1. �2�

For �=1 and �	1, the above formula takes the form known
as the Cole-Davidson �CD� function, for �	1 and �=1, it
takes the form of the Cole-Cole �CC� function, and for
�=1 and �=1, one obtains the Debye pattern. For �	1, the
HN function �2� possesses the power-law properties �1�
with n=1−�� and m=�, and it fits the so-called typical
relaxation behavior with the power-law exponents satisfying
relation m�1−n �2,3�. For practical purposes, to fit the
data exhibiting the less typical relaxation behavior with
m	1−n, the HN function with parameters from the ex-
tended range, 0	�	1 and 0	��	1, has been proposed

�2�. Unfortunately, only for �
1 the origins of the HN func-
tion �2� can be found within the fractional Fokker-Planck
equation �4� and continuous-time random walk �CTRW�
�5,6� approaches.

The experimental evidence shows that the set of relax-
ation data exhibiting the less typical two-power-law relax-
ation pattern with the low- and high-frequency power-law
exponents satisfying relation m	1−n cannot be neglected.
Indeed, such a less typical behavior has been observed by us
in gallium �Ga�-doped Cd0.99Mn0.01Te mixed crystals �see
Fig. 1 where sample frequency-domain data measured for the
Cd0.99Mn0.01Te:Ga at various temperatures are depicted�.
The sample of Cd0.99Mn0.01Te:Ga used in this study was
processed by the Bridgman method. The room-temperature
net donor concentration, estimated from capacitance-voltage
measurements performed with 1 MHz capacitance bridge,
was found to be in the order of 1016 cm−3. Gold Schottky
contacts were thermally evaporated on the front side of the

*marcin.magdziarz@pwr.wroc.pl

FIG. 1. Normalized imaginary susceptibility data obtained for
gallium-doped Cd0.99Mn0.01Te �log-log scale�. Straight lines repre-
sent linear fits to data points. Values of the power-law exponents m
and 1−n are equal to the slope coefficients estimated by the method
of least squares.
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sample. The measurements were performed using Novocon-
trol impedance analyzer. Dielectric response of the sample
was measured in the frequency range from 0.2 Hz to 3 MHz
at temperatures in the range of from 77 to 300 K. Presented
results were obtained at zero bias after application of the ac
probe signal amplitude equal to 10 mV.

The examined material belongs to semiconductors of
group II-VI possessing deep metastable defects—the so-
called DX centers �see �7� and references therein�. Formation
of such centers in Cd1−xMnxTe:Ga results from the bistabil-
ity of Ga dopant which makes this mixed crystal an attractive
material for holography and high-density data storage �opti-
cal memories�. This fact motivates for increasing interest not
only in experimental but also in theoretical studies �7,8� on
relaxation behavior of semiconductor mixed crystals pos-
sessing the DX centers.

The aim of this paper is to derive a general class of the
two-power-law relaxation responses covering and explaining
the whole range of the observed pattern �1�. A subordination
approach, i.e., a transition from the physical time to a new
operational time of the system, provides successful tools to
study the anomalous diffusion processes �9–18�. Employing
this subordination approach in Sec. II, we build a methodol-
ogy to interpret both power-law exponents as well as the
relationship between them in Sec. III. This is in contrast to
earlier studies �19�, where the fractional Fokker-Planck equa-
tion approach has led to the CC relaxation �formula �2� with
�=1� only. The technical parts of our derivation of over- and
undershooting compound counting processes and corre-
sponding subordinators are left for Appendixes A and B.
Finally, we end with conclusions in Sec. IV, where discus-
sion of our findings is presented.

II. SUBORDINATION APPROACH
TO ANOMALOUS DIFFUSION

As far as the physical mechanism underlying the anoma-
lous relaxation is concerned, the diffusion limit
�5,6,10–12,15,20–22� of a CTRW should be considered. The
CTRW process R�t� determines the total distance reached by
a random walker until time t. It is equal to the sum of inde-
pendent and identically distributed random jumps Ri per-
formed by the walker at random instants of time

R�t� = �
i=1

��t�

Ri, �3�

where ��t� denotes the random number of steps performed by

the walker until time t. Diffusion front R̃�t� of Eq. �3� is
represented by the asymptotic behavior of the rescaled total
distance f�c�R�ct� when dimensionless time-scale coefficient
c tends to  and the space-rescaling function f�c� is chosen
appropriately

R̃�t�=
d

lim
c→

f�c�R�ct� . �4�

�The symbol “=
d

” means equal distributions.� Notice that
f�c�R�ct� is the total distance of the CTRW �3� correspond-

ing to the rescaled spatiotemporal steps �f�c�Ri ,Ti /c�, where
�Ti� denotes a sequence of interjump time periods that deter-
mine the counting process ��t�.

In the framework of linear-response theory �23,24�, the
temporal decay of a given mode k, representing excitation
undergoing diffusion in the system under consideration, is
given by the inverse Fourier transform of the diffusion front

��t� = 	eikR̃�t�
 .

The relaxation function ��t� is related to the frequency-
domain response by relation

���� � �
0



exp�− i�t��−
d��t�

dt
dt ,

and the high- and low-frequency power laws �1� correspond
to the following short- and long-time behaviors of ��t�:

1 − ��t� � ��pt�1−n, �pt � 1,

��t� � ��pt�−m, �pt � 1. �5�

The resulting relaxation patterns are connected not only with
stochastic properties of the jumps and the interjump times
but also with a stochastic dependence between them. In the
classical waiting-jump CTRW idea, in which the jump Ri
occurs after the waiting-time period Ti, we have ��t�=�0�t�,
where

�0�t� = max�n:�
i=1

n

Ti 
 t�
is the renewal counting process determined by the waiting
times Ti’s. However, the number of steps in Eq. �3� can be
easily modified into

��t� = min�n:�
i=1

n

Ti � t� = �0�t� + 1

if the jump-waiting CTRW scenario, in which a walker rests
for time Ti after jumping on distance Ri, is taken into ac-
count. In case of the decoupled CTRW, i.e., when addition-
ally the stochastic independence of the jump Ri and the wait-
ing time Ti is assumed, this modification does not influence
the resulting diffusion front and the corresponding type of
relaxation �25�. But, if the coupled case �25� is considered,
the waiting-jump and jump-waiting schemes may lead to es-
sentially different relaxation patterns as we shall show in this
paper.

In order to enlarge the class of diffusion scenarios in the
CTRW approach to relaxation, the so-called clustered-jump
random walks have been introduced and examined �5,6,25�.
This type of coupled CTRWs follows from a stochastic gen-
eralization of the renormalization-group transformation idea
applied to random walks �26,27�. Let us note that the
renormalization-group theory, appearing frequently in phys-
ics and material science �28�, reveals a plethora of phenom-
ena that are scale invariant such as the polymer statistics of
protein, the symbolic dynamics of DNA, the statistics of re-
laxation rates in complex �dielectric, magnetic, or mechani-
cal� relaxing systems, etc.
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The properties of the clustered-jump CTRW, which result
originally from assembling the jumps from a randomly sized
spatial cluster into a single renormalized jump, can be ob-
tained equivalently �25� by replacing the classical renewal
counting process in Eq. �3� with a specially constructed com-
pound counting process. �For details, see Appendix A.�
Namely, in the clustered-jump CTRW for the waiting-jump
scheme, the number of jumps performed up to time t reads

�U�t� = �0�t� − U�t� , �6�

and since it is less than the number �0�t� in the classical case,
it defines the undershooting compound counting process. For
the jump-waiting scheme, the number of jumps performed up
to time t exceeds �0�t� and is given by the overshooting
compound counting process

�O�t� = �0�t� + O�t� . �7�

Formulas �6� and �7� reflect physical dependences �coupling�
between the waiting time and the following jump and be-
tween the jump and the following resting time, respectively.
It follows from the construction that the coupling terms O�t�
and U�t� are related to the size of the last clustered spa-
tiotemporal step performed before or at time instant t. Term
O�t� counts those elements of the clustered jump that would
occur after time t and U�t� those performed before or at t if
the clustering procedure were not applied. The sum U�t�
+O�t� is hence equal to the �random� size of the considered
cluster.

It strongly depends on distribution of the cluster sizes if
the above counting processes influence �or not� the corre-
sponding diffusion front. It appears �25� that clustering with
finite-mean-value cluster sizes does not lead beyond the clas-
sical decoupled CTRW models. In particular, assuming addi-
tionally heavy-tailed distribution of the waiting times

Prob�Ti � t� � �t/�0�−� as t →  �8�

for some 0	�	1, �0�0 and considering symmetric
jumps Ri with finite-mean-square length 	Ri

2
=�2�0, inde-
pendent of Ti, we obtain the diffusion front of the same sub-
ordinated form as in the classical decoupled case �see, e.g.,
�15��

R̃�t�=
d

�B„S��t/�0�… , �9�

where the parent process B�s� is a Brownian motion and the
operational time is given by

S��t� = inf�s:L��s� � t�

for L��s� being a strictly increasing �-stable Lévy motion
independent of B�s�. The parent process reflects the random
properties of the jumps Ri. The operational time corresponds
to the properties of the counting process and it strongly in-
fluences the kinetics of the system. Therefore, the relaxation
properties of the system under the operational time are modi-
fied.

The probability distribution of the diffusion front �9� can
be represented as well by a mixture of Gaussian and Lévy-
stable laws. We have

R̃�t�=
d

��t/�0��/2G��
−�/2, �10�

where G and �� are independent random variables distrib-
uted according to the standard normal and completely asym-
metric Lévy-stable laws, respectively. The corresponding re-
laxation pattern is given by the Mittag-Leffler �ML�
relaxation function

�ML�t� = E�„− ��pt��
… , �11�

where E��x� is the Mittag-Leffler function �20,21,29� and
�p= ���k��2/� /�0 denotes a positive, characteristic material
constant. In this case, the corresponding frequency-domain
response ���� takes the CC form �20�, which exhibits the
power-law property �1� with m=1−n=�.

The general class of the two-power-law relaxation re-
sponses follows from the scale-invariant clustering proce-
dure characterized by a heavy-tailed cluster-size distribution
with the tail exponent 0	�	1. In such a case, the opera-
tional time is modified by coupling between jumps and in-
terjump times and becomes different than S��t�. Moreover,
the waiting-jump and jump-waiting schemes lead to two dif-
ferent limiting processes and, consequently, to different re-
laxation responses.

Indeed, for the jump-waiting scheme, we have shown �25�
that

R̃O�t�=
d

��t/�0��/2G��
−�/2 1

B�
1/2 , �12�

where B� is the generalized arcsine random variable, inde-
pendent of G and �� �defined as in Eq. �10��. The above
form of the diffusion front leads to the HN response �5�, and
it is equivalent to

R̃O�t�=
d

�B„Z�,�
O �t/�0�… , �13�

where the operational time is given by Z�,�
O �t�=X�

O(S��t�). On
the other hand, the waiting-jump scenario leads to �25�

R̃U�t�=
d

��t/�0��/2G��
−�/2B�

1/2 �14�

and as a consequence, to the generalized Mittag-Leffler
�GML� response �6�. Equivalently,

R̃U�t�=
d

�B„Z�,�
U �t/�0�… �15�

with Z�,�
U �t�=X�

U�S��t��. Here, X�
O�s�=V��Y��s�� and X�

U�s�
=V�

−�Y��s�� with V��y� being a strictly increasing �-stable
motion, V�

−�y�= lim
x→y−

V��x� �the left-limit �-stable process�,

and Y��s�=inf�y :V��y��s�. Moreover, V��s� and, conse-
quently, X�

O�s� and X�
U�s�, are independent of both S��t� and

the parent process B�s�. To obtain diffusion fronts �9�, �13�,
and �15�, the scaling function has to be of the form f�c�
= ���1−��c−��1/2, where �� · � is the gamma function. For
derivations of Eqs. �13� and �15�, see Appendix B.

Formulas �13� and �15�, presenting the anomalous diffu-
sion processes in the subordinated version, are of a great
importance for computer simulations of the walker’s trajec-
tories �Fig. 2� �for details see �16��. One can also use equiva-
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lent forms of the compound subordinators Z�,�
O �t� and Z�,�

U �t�,

Z�,�
O �t� = S��t� + O��S��t�� , �16�

Z�,�
U �t� = S��t� − U��S��t�� , �17�

where O��s�=X�
O�s�−s denotes the leap-over process �30,31�

and U��s�=s−X�
U�s� the undershooting process. Formulas

�16� and �17� reveal properties of the compound operational
times Z�,�

O �t� and Z�,�
U �t� as over- and undershooting subordi-

nators, respectively. The presence of coupling terms O��s�
and U��s� reflects the random properties of the clustered
complex system in which a given mode undergoes diffusion.
Moreover, it indicates that the dissimilarity in the waiting-
jump and jump-waiting schemes involves different modifica-
tions �stretching or contracting� of the operational time S��t�
corresponding to the ML relaxation scenario �see Fig. 3�.

III. TWO-POWER-LAW RELAXATION

The over- and undershooting subordination results in
stretching and contracting of the operational time S��t� char-

acteristic for the ML �or CC� relaxation mechanism

Z�,�
U �t� 
 S��t� 
 Z�,�

O �t� .

As a consequence, the ML scheme is extended within the
subordination approach into two different relaxation sce-
narios covering the typical and less typical empirical relax-
ation patterns �see Table I�. The overshooting subordinator
�16� leads to

�HN�t� = �
0



E�„− ��pt��x…h�
O�x�dx , �18�

with h�
O�x�= �������1−���−1x−1�x−1�−� for x�1 and 0 oth-

erwise. In this scenario, the corresponding frequency-domain
response takes the form of the HN function �2� yielding the
power-law property �1� with exponents n=1−�� and m=�
�1−n, characteristic for the typical relaxation behavior �see
Fig. 4�.

In case of the undershooting subordinator �17�, we obtain
here a representation of the GML relaxation function �6�

�GML�t� = �
0



E�„− ��pt��x…h�
U�x�dx , �19�

with h�
U�x�= �������1−���−1x�−1�1−x�−� for 0	x	1 and 0

otherwise. �Notice that h�
O�x�=x−2h�

U�x−1�.� In this scenario,
the corresponding frequency-domain response cannot be ex-
pressed in an analytical form. Nevertheless, the power-law
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FIG. 2. �Color online� Sample paths of the diffusion fronts R̃�t�,
R̃O�t�, and R̃U�t� corresponding to the ML, HN, and GML relaxation
responses, respectively. Parameters: �=0.9, �=0.8, �=�0=1.
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TABLE I. Fractional relaxation scenarios, corresponding opera-
tional times �subordinators�, and diffusion fronts.

Type of relaxation
Corresponding

operational time
Corresponding
diffusion front

Mittag-Leffler S��t� R̃�t�=
d

�B(S��t /�0�)

Havriliak-Negami Z�,�
O �t� R̃O�t�=

d

�B(Z�,�
O �t /�0�)

Generalized
Mittag-Leffler Z�,�

U �t� R̃U�t�=
d

�B(Z�,�
U �t /�0�)
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FIG. 4. �Color online� Sample time-domain representation of the
HN and GML relaxation functions: �left panel� long-time and �right
panel� short-time power-law behaviors. Parameters: �=0.9, �=0.8.
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exponents and the relationship between them can be derived.
We get the following: n=1−� and m=��	1−n, which fit
the less typical relaxation behavior �see Fig. 4�.

The above relaxation functions can be represented also in
the form of a weighted average of an exponential decay e−bt

with respect to the distribution of the effective-relaxation rate
b. Namely, we have �6�

�GML�t� = �
0



e−btgGML�b�db

for the following relaxation-rate probability density function

gGML�b� =
sin����b����b�−1

��b/�p�−2� + 2�b/�p�−�cos���� + 1��/2 ,

where

��b� =
�

2
− arctan� �b/�p�� + cos����

sin����  .

Similarly, we obtain �32,33�

�HN�t� = �
0



e−btgHN�b�db

for

gHN�b� =
1

�b

sin����b��
��b/�p�2� + 2�b/�p��cos���� + 1��/2 ,

where here

��b� =
�

2
− arctan� �b/�p�−� + cos����

sin����  .

This result is in agreement with the idea of a superposi-
tion of the classical �exponential� Debye relaxations in the
historically first attempt to nonexponential dielectric relax-
ation phenomena �see, e.g., �1��. The result follows from the
fact that the ML relaxation function �11� can be expressed as
a linear continuous superposition of decaying exponentials
�34,35�.

A complete understanding of the fractional two-power-
law relaxation mechanism requires an explanation of the mi-
croscopic origins of the parameters � and �. As far as � is
concerned, the progress in understanding of this parameter
has been already made few years ago �see �4� and the refer-
ences therein�. The parameter � arises naturally from the
diffusion limit of a decoupled CTRW in which the interjump
times obey distribution with the characteristic power tail �8�
and the jumps are of a finite-mean-square length. This
“fractal-time” random-walk picture �36�, whereby a particle
is trapped in a given configuration for an arbitrarily long
time before executing a jump, immediately suggests that the
parameter � is related to the anisotropy of the material on a
microscopic scale. The microscopic anisotropy gives rise to a
distribution of microscopic potential barrier heights which,
in turn, give rise to a hierarchy of relaxation times not all of
which have the same probability of occurrence. It can be,
hence, concluded that the parameter �, characteristic for the
ML relaxation, has its origin in random activation energy
scenario �37�.

Concerning interpretation of the parameter �, some ad-
vances were made by Kalmykov et al. �4� in their generali-
zation of the noninertial Fokker-Planck equation to the frac-
tional kinetics. Replacing the partial derivative in the
Fokker-Planck equation by a fractional operator of order �,
they succeeded in derivation of the HN function without any
explanation of the relaxation mechanism hidden behind it.
The authors �4� even doubted if the fractional-time random
walk underlying the HN relaxation can be ever found. Con-
trary to that conclusion, we have succeeded in construction
of such a CTRW scheme �and equivalent subordination sce-
nario� that yields not only the HN response but also the GML
pattern fitting the less typical relaxation behavior. Within the
proposed approach, we have shown that the parameter �
arises from a scale-invariant structure of the complex sys-
tems and its origins are related to stretching and contracting
of the operational time corresponding to the ML case.

IV. CONCLUSIONS

Using the subordination approach to anomalous diffusion,
we have demonstrated how the well-known uncoupled
CTRW, underlying the ML relaxation, can be generalized to
a coupled CTRW yielding the two-power-law dielectric re-
laxation patterns with any exponent m and n falling in the
range �0,1�. We have hence shown that not only the ML �m
=1−n� relaxation mechanism may be based on a fractional-
time random walk. The result is of a particular interest in
dielectric relaxation as it brings into light the fractional dy-
namics of both the typical �m�1−n� and less typical �m
	1−n� responses. It shows that the two distinct classes fol-
low from such a specific coupling between the jumps and the
interjump times that stretches or contracts the operational
time characteristic for the ML case. In other words, they
follow from anomalous diffusion processes that lead to spe-
cific superpositions of the ML relaxation mechanisms.

Concluding, we have shown that betalike mixtures �18�
and �19� of the Mittag-Leffler function provide two different
relaxation functions that can explain the whole class of the
two-power-law experimental results. Note that in agreement
with the first statistical attempt to nonexponential relaxation
phenomena, both relaxation functions may be equivalently
expressed as a weighted average of an exponentially decay-
ing function with respect to the effective-relaxation-rate dis-
tribution.
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APPENDIX A: DERIVATIONS OF OVER-
AND UNDERSHOOTING COMPOUND

COUNTING PROCESSES

The construction of the clustered-jump CTRW is strictly
connected with assembling the jumps and waiting times into
clusters of random sizes M1 ,M2 , . . .. We assume that �Mj� j�1
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is a sequence of independent and identically distributed posi-
tive integer-valued random variables and that this sequence
is independent of the family of the spatiotemporal vectors
��Ri ,Ti��i�1. Then we transform the sequence of spatiotem-
poral steps ��Ri ,Ti��i�1 into a new family ��Rj ,Tj�� j�1 by
means of the following procedure:

�Rj,Tj� = �
i=1

Mj

�Ri+M1+¯+Mj−1
,Ti+M1+¯+Mj−1

� . �A1�

The clustered-jump CTRW process is defined as a coupled
CTRW corresponding to ��Rj ,Tj�� j�1. Coupling �the depen-
dence between the jumps Rj and the waiting times Tj� is
determined by the distribution of cluster sizes Mj �25�. In
details,

R�t� = �
j=1

�̄�t�

Rj , �A2�

where �̄�t�=max�n :� j=1
n Tj 
 t� for the waiting-jump scheme,

while �̄�t�=min�n :� j=1
n Tj � t� for the jump-waiting scenario.

Equivalently, the clustered-jump CTRW process �A2� takes
the form consistent with �3� in which the number of sum-
mands is given by the following compound counting pro-
cess:

��t� = �
j=1

�M��0�t��

Mj . �A3�

For the waiting-jump case �M�m�=�M
U �m�=max�n :� j=1

n Mj

m� that leads to ��t� in Eq. �A3� equal to the undershooting
compound counting process �U�t�=�0�t�−U�t� �Eq. �6��. In
the jump-waiting scheme �M�m�=�M

O �m�=min�n :� j=1
n Mj

�m� and, as a consequence, we obtain the overshooting
compound counting process �O�t�=�0�t�+O�t� �Eq. �7��. Ob-
serve that �O�t�−�U�t�=0�t�+U�t�=M�M

O �m�, the size of that
clustered jump for which the clustered interjump time period
includes the time instant t.

APPENDIX B: DERIVATIONS OF OVER- AND
UNDERSHOOTING SUBORDINATORS

In what follows, we prove that the mixture of standard
normal and completely asymmetric Lévy-stable laws given
in formula �10� has the same distribution as the diffusion

front R̃�t� in Eq. �9�. Using the fact that the Brownian motion

B�s� is 1/2-self-similar �and hence B�s�=
d

s1/2B�1�� and inde-
pendent of the operational time S��t�, we obtain

�B„S��t/�0�…=
d

�„S��t/�0�…1/2B�1� , �B1�

where B�1� has the same distribution as G in Eq. �10�. More-
over, by 1 /� self-similarity of the �-stable Lévy motion

L��s�, yielding L��s�=
d

s1/�L��1�, we get for s�0,

Prob�S��t� 
 s� = Prob�L��s� � t� = Prob��t/L��1��� 
 s� .

�B2�

Therefore, S��t� is equal in distribution to �t /L��1���, where
L��1� has the same distribution as �� in Eq. �10�. Plugging
this result into Eq. �B1�, we obtain

�B„S��t/�0�…=
d

��t/�0��/2
„L��1�…−�/2B�1� ,

which gives the desired mixture of standard normal and com-
pletely asymmetric Lévy-stable laws.

Now, let us show that the overshooting diffusion front

R̃O�t� defined in Eq. �13� is equal in distribution to the mix-
ture of laws �12�. We have

�B„Z�,�
O �t/�0�…=

d

�„Z�,�
O �t/�0�…1/2B�1�

=
d

�„X�
O�S��t/�0��…1/2B�1� . �B3�

Recall that X�
O�s�=V��Y��s��, with V��y� being a strictly in-

creasing �-stable motion and Y��s� its inverse. Thus, the pro-

cess X�
O�s� is one-self-similar and hence X�

O�s�=
d

sX�
O�1�.

Therefore, using Eq. �B2�, we obtain

��X�
O�S��t/�0���1/2B�1�=

d

��t/�0��/2�L��1��−�/2�X�
O�1��1/2B�1� .

�B4�

Additionally, X�
O�1� can be represented as X�

O�1�=
d

1+O��1�,
where O��s� is the leap-over process. The random variable
O��1� is Fisher-distributed with parameters �1−� ,�� �30�.

Therefore, O��1�=
d

G1 /G2, where G1 and G2 are independent
Gamma-distributed random variables with respective param-
eters 1−� and �. Consequently,

X�
O�1�=

d

1 + O��1�=
d G1 + G2

G2
=
d 1

B�

,

where B� is distributed according to the beta distribution
with parameters � and 1−�, known also as the generalized
arcsine distribution. Plugging the above result into Eqs. �B3�
and �B4� leads us to the desired result.

To show that the undershooting diffusion front R̃U�t� de-
fined in Eq. �15� is equal in distribution to the mixture of
laws �14�, we use the fact that for every 0	s	 t,

Prob�X�
U�t� 
 s� = Prob�X�

O�s� � t� = Prob�t/X�
O�1� 
 s� .

Therefore,

X�
U�1�=

d 1

X�
O�1�

=
d

B�.

Then, the next steps of the proof are parallel to the case of

the overshooting diffusion front R̃O�t�.
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